

Regional Haze

MA DEP SIP Steering Committee Meeting

January 5,2006

What is regional haze?

• Visibility impairment caused by the cumulative emission of air pollutants from numerous sources over a wide geographic area.

• The primary cause of visibility impairment is the scattering and absorbtion of light by fine particles.

Where do fine particles come from?

- Local emissions including mobile, stationary and area source emissions
- Transported emissions, particularly from large SO₂ sources
- Meteorological transport and atmospheric chemistry lead to the formation of secondary pollutants which are incorporated into fine particles

What do fine particles consist of?

Calculating Total Light Extinction

```
\mathbf{b_{ext}(Mm^{-1})} = \mathbf{b_{SO4}} + \mathbf{b_{NO3}} + \mathbf{b_{OC}} + \mathbf{b_{Soil}} + \mathbf{b_{Coarse}} + \mathbf{b_{ElemC}} + \mathbf{b_{Ray}}
```

Measures of Visibility

Extinction Coefficient (b_{ext}) = $b_{SO4} + b_{NO3} + b_{OrgC} + b_{Soil} + b_{coarse} + b_{ElemC} + b_{Ray}$ Visual Range (km) = $3.912 / b_{ext}$ (km⁻¹)

Deciview (dv) = $10 \ln (b_{ext} / 10 \text{ Mm}^{-1})$

Typical day in Northeast

What are Applicable Rules?

- Final 1999 Regional Haze Rule (7/1/99)
 - http://www.epa.gov/ttn/oarpg/t1/fr_notices/rhfedreg.pdf
- Final Clean Air Visibility Rule (6/20/05)
 - Preamble http://www.epa.gov/oar/visibility/pdfs/preamble_2005_6_24.pdf
 - Final BART Guidelines
 http://www.epa.gov/oar/visibility/pdfs/guidelines_2005_6_24.pdf
- Website for all regulatory actions related to visibility
 - http://www.epa.gov/oar/visibility/actions.html

What is the goal of the 1999 regional haze rule?

• To achieve natural background visibility conditions (pristine conditions) in all Class I Areas by 2064. 156 national parks and wilderness areas in the United States are designated as Class I Areas.

Class I areas in the MANEVU RPO Region

REGIONAL HAZE SIP TIMELINE

Regional Planning Organizations

Core Requirements of Regional Haze Rule

- Calculation of Baseline & Natural Visibility Conditions
- Reasonable Progress Goal
- BART
- Long-term Strategy (control measures needed to achieve reasonable progress)

Calculation of Baseline & Natural Visibility Conditions

Baseline Visibility Conditions Class I State SIP

Section (d)(2)(i) of 40 CFR 51.308

- Baseline Period is 2000-2004
- Average impairment for most and least impaired days for each calendar year
- Compile the average of three annual averages
- Need the most representative available monitoring data

Natural Visibility Conditions Class I State SIP

Section (d)(2)(iii-iv) of 40 CFR 51.308

- Data from most impaired days
- Data from least impaired days
- Use EPA Guidance for estimating natural visibility conditions in Class I area

Visibility in MANE-VU Class I Areas

	Est Baseline	Est. Natural Visibility	
	Worst 20% Days	Worst 20% Days	
	(in deciviews)	(in deciviews)	
Maine			
Acadia National Park	22.86	11.45	
Moosehorn Wilderness	21.53	11.36	
Roosevelt Campobello	21.53	11.37	
New Hampshire			
Great Gulf Wilderness	TBD	11.30	
Presidential Range	TBD	11.30	
New Jersey			
Brigantine Wilderness	27.92	11.28	
Vermont			
Lye Brook Wilderness	24.24	11.25	

Determine Reasonable Progress Goal for Class I Area

Reasonable Progress Goal Class I State SIP

Section (d)(1) of 40 CFR 51.308

- Establish baseline visibility (2000-2004)
- Estimate natural visibility conditions
- Estimate 2018 "Goal" to reach natural conditions by 2064 (Presumptive Goal)
- Estimate emission reduction required to reach 2018 "Goal"

Reasonable Progress Goal Glidepath for 20% Worst Days at Acadia Park

"Acceptable" Reasonable Progress Goal for Class I State SIP

- Consider a uniform rate of improvement between baseline and natural conditions
- Ensure no degradation in visibility for least impaired days
- If SIP establishes a slower rate of reasonable progress, State must:
 - 1) Demonstrate reasonable progress in light of factors required to consider.
 - 2) Calculate how many years would be needed at the slower rate to achieve natural visibility.
 - 3) Provide for public review.

Implement BART Controls in States Impacting Class I Areas

Best Available Retrofit Technology Source State SIP

Section (e) of 40 CFR 51.308

- List all BART-eligible sources
- Determine which sources contribute to visibility impairment those require BART
- Determine BART for each source
- Justify sources that are exempt
- May examine/establish a trading program

BART Eligible Sources

- 1) Are in one of 26 source categories as identified in the Clean Air Act (see next slide)
- 2) Have units that were in existence on August 7, 1977, but had not been in operation for more than 15-years as of that date (prior to August 7, 1962)
- 3) Have the potential to emit of 250 TPY or more of any single visibility impairing pollutant from units that satisfy criterion #2. These pollutants include SO₂, NO_x, PM_{2.5} and under some circumstances VOC's and ammonia.

26 BART Categories

- Power Plant
- Coal Cleaning
- Kraft Pulp
- Portland Cement
- Zinc Smelter
- Iron and Steel
- Aluminum Ore
- Copper Smelter
- Incinerator

- Acid Plant
- Petroleum Refinery
- Lime Plant
- Phosphate Rock
- Coke Oven Battery
- Sulfur Recovery
- Carbon Black
- Lead Smelter
- Fuel Conversion

- Sintering
- Secondary Metal
- Chemical Plant
- Boilers
- Petroleum Storage
- Taconite Ore
- Glass Fiber
- Charcoal Production

BART ENGINEERING ANALYSIS

- Identify all available Retrofit Control Technologies
- Eliminate technically infeasible options
- Evaluate control effectiveness of remaining control technologies
- Evaluate impacts and document the results

Costs of compliance, energy impacts, non-air quality environmental impacts and remaining useful life

Evaluate visibility impacts

Develop modeling protocol

Run model at pre-control and post-control emission rates and calculate net visibility improvement

BART Resource Book (NESCAUM)

Roadmap to assist states with the engineering analysis

Draft will be available for review - late December 2005

Prepare Long-term Strategy (control measures) to Achieve Reasonable Progress in Class I Areas

Long Term Strategy Requirement Source State SIP

Section (d)(3) of 40 CFR 51.308

Required for each Class I area affected by emissions from the state

Must include enforceable emissions limits and compliance schedules

Must help achieve reasonable progress goal

Long Term Strategy Source State SIP

Section (d)(3)(i-iii) & (i)(2) of 40 CFR 51.308

- States must consult with each other and FLMs
- State must document basis for its share of reductions
- Strategy must achieve reductions agreed to through RPO process

Long Term Strategy Factors Source State SIP

Section (d)(3)(v) of 40 CFR 51.308 At minimum, the state must consider

- Ongoing air pollution control programs
- Measures to mitigate construction impacts
- Emissions limits & schedules to achieve goals
- Source retirement & replacement schedules
- Smoke management techniques
- Anticipated net effect on visibility due to changes during the period
- Enforceability

SIP Technical Analyses

• Emission Inventories (2002, 2012, 2018)

Models to be used

Evaluate Control strategies (CMAQ)
Estimate State contributions (REMSAD, CALPUFF)
BART visibilty impacts (CALPUFF)

• Weight of evidence techniques

Trajectory analysis

Source apportionment techniques (PMF and UNMIX)

Trends analysis

Weight of Evidence techniques

Table ES-1: Summary of technical approaches for attributing state contributions to observed sulfate in MANE-VU Class I areas.

Analytical technique	Approach
Emissions/distance	Empirical
Incremental Probability	Lagrangian trajectory technique
Cluster-weighted Probability	Lagrangian trajectory technique
Emissions x upwind probability	Empirical/trajectory hybrid
Source Apportionment Approaches	Receptor model/trajectory hybrid
REMSAD tagged species	Eulerian source model
CALPUFF with MM5-based meteorology	Lagrangian source dispersion model
CALPUFF with observation based meteorology	Lagrangian source dispersion model

MANEVU 2002 Annual SO2 Emissions

MANEVU 2002 Annual NO2 Emissions

•MANE-VU developed future year modeling emission inventories for 2009, 2012, and 2018. These inventories are avilable in SMOKE/IDA and/or NIF 3.0 format and can be found at ftp.marama.org

Username: future

Password: emissions

•Data Summaries for 2009, 2012, and 2018 will be available shortly

Contribution analysis

(Monthly average sulfate concentration)

Acadia NP

Brigantine NWR

Contribution to PM sulfate in a receptor site

NEXT STEPS

Assess relative contribution from each state for each Class I area

- Finalize modeling/analyses with/most up-to-date data
- Finalize NESCAUM contribution assessment report (January 2006)

• BART engineering analysis

- Finalize BART-eligible source list for each state
- NESCAUM will use CALPUFF model to determine impacts on Class I areas.

Assess the relative and absolute emission reductions needed to achieve the desired rate of progress

- Consultation between all States affecting each Class I area
- Minimum reductions will include CAIR and any other measures needed to meet BART requirements, and to attain the ozone and PM_{2.5} NAAQS.
- Further reduction beyond CAIR appear to be needed to achieve progress consistent with the uniform rate of progress. If that rate cannot be achieved, the SIP must explain why.

2002 12km CMAQ Base Case Simulation

Centers	Sim.Period		Anal.Period	
UMD	12/15/2001 to	2/28/2002	1/01/2001	to 2/28/2002
ORC	2/15/2002 to	5/14/2002	3/01/2002	to 4/30/2002
NYSDEC	5/01/2002 to	9/30/3002	5/15/2002	to 9/30/2002
VADEQ	9/15/2002 to	10/30/2002	10/1/2002 t	to 10/30/2002
NESCAUM	10/15/2002 to	12/31/2002	11/1/2002 t	to 12/31/2002